Biological Aspects of Deciphering and Engineering Regulatory Networks

George N. Bennett

Department of Biochemistry and Cell Biology

Rice University Houston, Texas

Metabolic Engineering Workshop February 2007

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

Hans V. Westerhoff and Boris N. Kholodenko: Metabolic Engineering in the Post Genomic Era

- Consider the cell as a production organism rather than as a production line.
- The organism may largely do away with much of the engineering by invoking its homeostatic control mechanisms
- Metabolic engineering should be directed at optimizing both the production flux and the functioning of the organism itself

Challenges in engineering networks of known genes & regulators

- Obtaining high levels of expression of desired genes
- Obtaining appropriate balance in levels of expression of pathway genes
- Consider regulation at enzyme level and feedback connections
- Consider the alternation of global cell physiology from the manipulation

Obtaining high levels of expression of desired genes

- Active promoters
- mRNA stability & translational efficiency
- Functionally active protein

Obtaining appropriate balance in levels of expression of pathway genes

- Library of promoters of varying strength
- Combinations of promoters & terminators,
 RBS for multicistronic mRNAs
- RNA regulators (antisense, RNA binding proteins)
- Plasmid vs chromosomal location

Taking into account the regulation at enzyme level and feedback connections

• Interconnections among regulators and small molecules

• Picking the best enzyme from various sources or evolve such attributes

We may know a great deal about individual components but the overall metabolic consequences of various alterations under defined conditions may not be so easily predicted

- Need detailed experiments to define which regulatory interactions are most important in a situation
- Functional activity of a protein depends on more than gene expression

A quick example from aerobic/anaerobic E. coli

PFL flux higher in arcA mutant

Why are the PFL fluxes higher in the arcA mutant? (Since Arc~P activates pfl expression): PFL is reactivated by YfiD

C-13 label flux analysis at 2.5% oxygen

YfiD contributes 18% of PFL flux in arcA mutant

PDH flux is ~25% of flux from pyruvate to acetyl-CoA in all strains

Overall series of actions (microaerobic)

arcA- leads to lower cyd

Low cyd can not handle all NADH and the level of reduced NADH rises

Higher NADH leads to expression of yfiD

Higher YfiD reactivates Pfl leading to higher flux through Pfl in arcA mutant in microaerobic conditions

Perspective

• Need a variety of experiments to see what are the important regulatory events in the network under a particular circumstance

• Methods to analyze a number of parameters in defined sample

Sometimes you can take advantage of the alternation of global cell physiology from a manipulation

• Alter levels of certain cofactors, sensors, transporters

Redox reactions involving NADPH

Engineer cells to produce more NADPH

Metabolic Engineering Strategy

Pathway measurements

- The pentose pathway that usually supplies most of cells NADPH is much reduced in the modified stain
- Measurements made by GC-MS of C-13 labelled amino acids in steady state cultures

If there is higher NADPH availability can we use this in another pathway?

Lycopene Production Result (24 h)

WT Mutant

Challenges in engineering networks containing unknown genes & regulators

- Identifying which genes to try to modify (define network)
 - Mathematical models
 - Gene expression microarray experiments or proteomic measurements
 - Tracing phosphorylation networks and connections
 - Similarities of protein-protein interaction networks to those of other species

Genetic exploration

- Individual & multiple gene knockouts or overexpression
- Adaptation to higher production and genome analysis
- Employing novel regulatory factors to affect pathway genes
- Use of high throughput screens, enrichments or selections

Considerations

- How to identify and control genes useful for a specific metabolic engineering goal?
- One strategy- use high-throughput means to gather data, merge in model-computational and analytical approach
- Another strategy- use random approach genetic based-can find things you don't already know about

Partial E. coli regulatory network

Many global regulators affect a large number of genes

Summary of transcriptional interactions of major TFs, in the transcriptional regulatory network of *E. coli*.

Table 1

Transcription factor	Genes regulated*	Co-regulators [†]	TFs regulated [‡]	Sigma factors [§]	Functional classes of genes regulated#	Family (members) [¶]
CRP	197	47	22	$\sigma^{70,38,32,24}$	48	CRP (2)
IHF	101	28	9	$\sigma^{70,54,38}$	26	HI-HNS (2)
FNR	111	20	5	σ ^{70,54,38}	22	CRP (2)
FIS	76	15	4	σ ^{70,38,32}	20	EBP (14)
ArcA	63	18	2	$\sigma^{70,38}$	17	OmpR (14)
Lrp	53	14	3	$\sigma^{70,38}$	15	AsnC (3)
Hns	26	14	5	σ ^{70,38,32}	17	Histone-like (1)
NarL¥	65	10	1	$\sigma^{70,38}$	14	LuxR/UhpA (17)
OmpR	10	9	3	$\sigma^{70,38}$	5	OmpR (14)
Fur [¥]	26	8	2	σ ^{70,19}	9	Fur (2)
PhoB	26	1	3	σ ⁷⁰	9	OmpR (14)
CpxR	9	2	1	σ ^{70,38,24}	5	OmpR (14)
SoxRS	9	10	3	$\sigma^{70,38}$	10	AraC/XylS (24)
Mlc [¥]	5	3	1	$\sigma^{0,32}$	3	NagC/XyIR (7)
CspA [¥]	2	2	1	σ^{70}	2	Cold (9)
Rob**	7	8	2	$\sigma^{70,38}$	6	AraC/XylS (27)
PurR**	28	7	1	σ^{70}	10	GalR/Lacl (13)

^{*}Total number of genes regulated directly. †Number of different TFs with which at least a gene or TU is jointly co-regulated. ‡Number of regulated genes that codify for TFs. §List of σ factors of the regulated promoters. "Number of functional classes of the gene products regulated [44]. [¶]TF family and in parenthesis the number of members of the family. In addition to the seven global TFs considered here there are TFs suggested by ¥Babu and Teichmann, 2003, [42**] and **Shen-Orr et al., 2002, [50**].

Some regulators respond to many environmental growth conditions

Global environment growth conditions in which TFs are regulating. To see the detailed list of conditions see RegulonDB page: http://www.cifn.unam.mx/Computational_Genomics/regulondb/SupMat/conditions. Numbers in brackets indicate how many additional TFs participate in the same number of conditions.

Identifying important regulators in your network

- Individual specific regulators for operon
- Global regulators
- 2-component regulators
- Small RNA regulators

Test phenotypes of many regulatory genes under many different conditions-database.

• If a regulator has effect under conditions are important to production conditions; can manipulate those regulators and look for effects on the desired system?

•Zhou et al JBact 185, 4956, 2003 screened many mutants in hundreds of conditions

General Approaches to identifying functions of regulators

- What proteins bind to what gene regulatory regions in the chromosome?
- Address by variations of ChIP-chip
- What regulatory proteins interact with each other?
- Address with two-hybrid system variations or crosslinking and chemical analysis, protein interaction networks

Correlations to determine choices of genes to modify

• Two-component regulators often increased in level of their gene expression with condition where they exert their activity

Example

- In Clostridium:
- Which proteins are involved in initial kinase reaction that starts solvent formation and sporulation

If there were kinases that might phosphorylate Spo0A in Cac... how could we look for them?

Genome analysis: Compare genome characteristics of phosphorelay kinases with those of Bacillus subtilis

Cac has 36 His Kinases, 5 of them: LIKELY CANDIDATES?

- •Experimental analysis:
- •Suitable temporal expression patterns?
- •Structural similarity?

All Cac His Kinase Expression Profiles

Another strategy is more biochemical

• Use action of proteins in vitro to follow regulatory network

Tracing phosphorylation networks

• A regulator is autophosphorylated and then tested to see what other proteins it can transfer the labeled phosphate to in vitro

•Skerker et al Plos Biology 3 (10) e334

Action of small RNAs in regulation

- Identify possible RNAs by bioinformatics
- Do microarray with these intergenic regions
- Look at expression patterns of the RNAs
- Make overexpression and deletion mutants
- Explore these mutants by microarray to identify genes under their control

Take advantage of the complexity of regulatory network

let genetics help find useful changes to make

just want improved production?

Find out mechanism later

- Random or artificial evolution approach
- Selection or screen then analyze

Seeking effects of gene knockouts, gene overexpression, or regulatory sequence insertions

- Large scale library of variants
- Screen by optical sorting system based on metabolite or key protein to find +s
- Grow under stress of desired production condition- look for those tagged mutants found in higher abundance or greatly diminished in population

Genome sequence approach

 Adaptation of cells to higher growthproduction state-analyze genome of selected variant to see what has changed

 Used in industry to characterize production strain vs original parent

Examining the effect of novel transcriptional regulators

- Introduce mutations in known regulators
- Artificial Zn finger protein variants
- Find those that generate desired phenotype
- Then can perhaps identify and manipulate the affected genes and see how the change produced its effect

Mutations in known regulators

- Engineering Yeast
 Transcription
 Machinery for
 Improved Ethanol
 Tolerance and
 Production
- Mutate TATA binding transcription factor

Zn fingers

• Directly select

artificial zinc finger

proteins from a zinc

finger protein library
can join to other

protein

Bae & Kim Mol Cell 376, 2006

Bulyk et al PNAS 7158, 2001

Acknowledgments

Collaborators: Ka-Yiu San

Steve Cox

E. T. Papoutsakis

Ailen M. Sanchez Henry Lin

Jiangfeng Zhu Sagit Shalel Levanon

Our work was supported by grants from the National Science Foundation and USDA

(BES-0222691, BES-0000303, BES-0420840, and 2002-35505-11638)